The intrinsic resting state voice network in Parkinson's disease
نویسندگان
چکیده
Over 90 percent of patients with Parkinson's disease experience speech-motor impairment, namely, hypokinetic dysarthria characterized by reduced pitch and loudness. Resting-state functional connectivity analysis of blood oxygen level-dependent functional magnetic resonance imaging is a useful measure of intrinsic neural functioning. We utilized resting-state functional connectivity modeling to analyze the intrinsic connectivity in patients with Parkinson's disease within a vocalization network defined by a previous meta-analysis of speech (Brown et al., 2009). Functional connectivity of this network was assessed in 56 patients with Parkinson's disease and 56 gender-, age-, and movement-matched healthy controls. We also had item 5 and 18 of the UPDRS, and the PDQ-39 Communication subscale available for correlation with the voice network connectivity strength in patients. The within-group analyses of connectivity patterns demonstrated a lack of subcortical-cortical connectivity in patients with Parkinson's disease. At the cortical level, we found robust (homotopic) interhemispheric connectivity but only inconsistent evidence for many intrahemispheric connections. When directly contrasted to the control group, we found a significant reduction of connections between the left thalamus and putamen, and cortical motor areas, as well as reduced right superior temporal gyrus connectivity. Furthermore, most symptom measures correlated with right putamen, left cerebellum, left superior temporal gyrus, right premotor, and left Rolandic operculum connectivity in the voice network. The results reflect the importance of (right) subcortical nodes and the superior temporal gyrus in Parkinson's disease, enhancing our understanding of the neurobiological underpinnings of vocalization impairment in Parkinson's disease.
منابع مشابه
Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson’s disease
SEE POSTUMA DOI101093/AWW131 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson's disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour di...
متن کاملDefault mode network and extrastriate visual resting state network in patients with Parkinson's disease dementia.
AIMS Using fMRI, we evaluated the default mode network (DMN) and the extrastriate visual resting state network (ESV-RSN) in 14 patients with Parkinson's disease dementia (PDD) as compared with 18 patients with Parkinson's disease (PD) without dementia and 18 healthy controls (HC). METHODS We analyzed the seed-based functional connectivity of both resting state data and deactivations during a ...
متن کاملRaised resting energy expenditure in Parkinson's disease and its relationship to muscle rigidity.
1. Resting energy expenditure was measured, by indirect calorimetry, in 12 patients with Parkinson's disease and in eight healthy age-matched control subjects. In the patients with Parkinson's disease measurements were made in both the untreated state and after an injection of the dopamine agonist apomorphine (treated state). In each state muscle rigidity was recorded. 2. Resting energy expendi...
متن کاملExecutive attention networks show altered relationship with default mode network in PD
Attention dysfunction is a common but often undiagnosed cognitive impairment in Parkinson's disease that significantly reduces quality of life. We sought to increase understanding of the mechanisms underlying attention dysfunction using functional neuroimaging. Functional MRI was acquired at two repeated sessions in the resting state and during the Attention Network Test, for 25 non-demented su...
متن کاملAltered intrinsic functional coupling between core neurocognitive networks in Parkinson's disease
Parkinson's disease (PD) is largely attributed to disruptions in the nigrostriatal dopamine system. These neurodegenerative changes may also have a more global effect on intrinsic brain organization at the cortical level. Functional brain connectivity between neurocognitive systems related to cognitive processing is critical for effective neural communication, and is disrupted across neurologic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 36 شماره
صفحات -
تاریخ انتشار 2015